Defective expression of Fas leads to B cell autoimmunity, indicating the importance of this apoptotic pathway in eliminating autoreactive B cells. However, B cells with anti-self specificities occasionally escape such regulation in individuals with intact Fas, suggesting ways of precluding this apoptosis. Here, we examine whether coligation of the B cell Ag receptor (BCR) with the complement (C3)-binding CD21/CD19/CD81 costimulatory complex can enhance the escape of human B cells from Fas-induced death. This was warranted given that BCR-initiated signals induce resistance to Fas apoptosis, some (albeit not all) BCR-triggered events are amplified by coligation of BCR and the co-stimulatory complex, and several self Ags targeted in autoimmune diseases effectively activate complement. Using a set of affinity-diverse surrogate Ags (receptor-specific mAb:dextran conjugates) with varying capacity to engage CD21, it was established that BCR:CD21 coligation lowers the BCR engagement necessary for inducing protection from Fas apoptosis. Enhanced protection was associated with altered expression of several molecules known to regulate Fas apoptosis, suggesting a unique molecular model for how BCR:CD21 coligation augments protection. BCR:CD21 coligation impairs the generation of active fragments of caspase-8 via dampened expression of membrane Fas and augmented expression of FLIPL. This, in turn, diminishes the generation of cells that would be directly triggered to apoptosis via caspase-8 cleavage of caspase 3 (type I cells). Any attempt to use the mitochondrial apoptotic protease-activating factor 1 (Apaf-1)-dependent pathway for apoptosis (as type II cells) is further blocked because BCR:CD21 coligation promotes up-regulation of the mitochondrial antiapoptotic molecule, Bcl-2.