Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Traditional grass-roofed dwellings are important components of Chinese vernacular architecture. Building a comprehensive nationwide database of traditional grass-roofed dwellings is crucial for the inherence of this cultural heritage and its traditional ecological technologies. This study proposes classifying traditional Chinese grass-roofed dwellings into three types according to recognizable appearance features. Based on the YOLOv8 deep learning framework, a recognition model is constructed to recognize and spatially locate various grass-roofed dwellings from the image dataset on a county-level. Further, by conducting spatial overlap analysis with a variety of natural and socio-environmental factors on ArcGIS, their influences on the distribution pattern of traditional grass-roofed dwellings were examined. The study findings are as follows: (1) Traditional grass-roofed dwellings are concentrated on the southeast side of the Hu Line with different distribution patterns according to their types. (2) The natural environment influences the original construction and distribution of traditional grass-roofed dwellings in terms of the growth of grass resources and the ecological adaptability of grass material. (3) The development of economy, population, and urbanization pose challenges to the retention of grass-roofed dwellings. This research provides useful references for the precise preservation of various grass-roofed dwellings and introduced a novel approach for the classification of traditional buildings.
Traditional grass-roofed dwellings are important components of Chinese vernacular architecture. Building a comprehensive nationwide database of traditional grass-roofed dwellings is crucial for the inherence of this cultural heritage and its traditional ecological technologies. This study proposes classifying traditional Chinese grass-roofed dwellings into three types according to recognizable appearance features. Based on the YOLOv8 deep learning framework, a recognition model is constructed to recognize and spatially locate various grass-roofed dwellings from the image dataset on a county-level. Further, by conducting spatial overlap analysis with a variety of natural and socio-environmental factors on ArcGIS, their influences on the distribution pattern of traditional grass-roofed dwellings were examined. The study findings are as follows: (1) Traditional grass-roofed dwellings are concentrated on the southeast side of the Hu Line with different distribution patterns according to their types. (2) The natural environment influences the original construction and distribution of traditional grass-roofed dwellings in terms of the growth of grass resources and the ecological adaptability of grass material. (3) The development of economy, population, and urbanization pose challenges to the retention of grass-roofed dwellings. This research provides useful references for the precise preservation of various grass-roofed dwellings and introduced a novel approach for the classification of traditional buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.