2024
DOI: 10.3389/fnins.2024.1306050
|View full text |Cite
|
Sign up to set email alerts
|

A rotary transformer cross-subject model for continuous estimation of finger joints kinematics and a transfer learning approach for new subjects

Chuang Lin,
Zheng He

Abstract: IntroductionSurface Electromyographic (sEMG) signals are widely utilized for estimating finger kinematics continuously in human-machine interfaces (HMI), and deep learning approaches are crucial in constructing the models. At present, most models are extracted on specific subjects and do not have cross-subject generalizability. Considering the erratic nature of sEMG signals, a model trained on a specific subject cannot be directly applied to other subjects. Therefore, in this study, we proposed a cross-subject… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?