Accurate geometries of small semirigid molecules in the gas phase are available thanks to high-resolution spectroscopy and accurate quantum chemical approaches. These results can be employed for validating cheaper lowlevel quantum chemical models or correcting the corresponding structures of large molecules. On these grounds, in this work, a large panel of semiexperimental equilibrium structures already available in the literature is used to confirm the average error (1 mÅ for bond lengths and 2 mrad for valence angles) of a version of the Pisa composite schemes (PCS2), which is applicable to molecules containing up to about 20 atoms. Then, the geometries of 30 additional mediumsized systems were optimized at the PCS2 level to cover a more balanced chemical space containing moieties poorly represented in SE compilations. The final database is available on a public domain Web site (https://www.skies-village.it/databases/) and can be employed for correcting structures of larger molecules obtained by hybrid or double-hybrid density functionals in the framework of the templating molecule approach. Several examples show that corrections based on the structures of building blocks taken from this database reduce the error of the B3LYP geometrical parameters of large molecules by nearly an order of magnitude without increasing the computational cost. Furthermore, the results of different density functional theory (DFT) or wave function (e.g., MP2) models can be improved in the same way by simply computing both the whole molecule and suitable building blocks at the chosen level. Then, whenever reference structures of some building blocks containing up to about 20 atoms are not available, they can be purposely optimized at the PCS2 level by employing reasonable computer resources. Therefore, a new DFT-cost tool is now available for the accurate characterization of large molecules by experiment-oriented scientists.