Osteosarcoma (OS) is a bone tumor of mesenchymal origin, most frequently occurring during the rapid growth phase of long bones, and usually located in the epiphyseal growth plates of the femur or the tibia. Its most common feature is genome disorganization, aneuploidy with chromosomal alterations, deregulation of tumor suppressor genes and of the cell cycle, and an absence of DNA repair. This suggests the involvement of surveillance failures, DNA repair or apoptosis control during osteogenesis, allowing the survival of cells which have undergone alterations during differentiation. Epigenetic events, including DNA methylation, histone modifications, nucleosome remodeling and expression of non-coding RNAs have been identified as possible risk factors for the tumor. It has been reported that p53 target genes or those genes that have their activity modulated by p53, in addition to other tumor suppressor genes, are silenced in OS-derived cell lines by hypermethylation of their promoters. In osteogenesis, osteoblasts are formed from pluripotent mesenchymal cells, with potential for self-renewal, proliferation and differentiation into various cell types. This involves complex signaling pathways and multiple factors. Any disturbance in this process can cause deregulation of the differentiation and proliferation of these cells, leading to the malignant phenotype. Therefore, the origin of OS seems to be multifactorial, involving the deregulation of differentiation of mesenchymal cells and tumor suppressor genes, activation of oncogenes, epigenetic events and the production of cytokines. Contents 1. Introduction 2. Biology of human OS 3. Role of differentiation of mesenchymal stem cells 4. Role of DNA changes 5. Role of deregulating the expression of tumor suppressor genes 6. Regulation of oncogene expression 7. Role of epigenetic mechanisms 8. Role of non-coding RNAs 9. Role of cytokines 10. Conclusion