Owing to the continuous expansion in data scale, the calculation, storage, and transmission of 3D data have been plagued by numerous issues. The point cloud data, in particular, often contain duplicated and anomalous points, which can hinder tasks such as measurement. To address this issue, it is crucial to utilize point cloud preprocessing methods that combine subsampling and denoising. These methods help obtain clean, evenly distributed, and compact points to enhance the accuracy of the data. In this study, an efficient point cloud subsampling method is proposed that combines point cloud denoising capabilities. This method can effectively preserve salient features while improving the quality of point cloud data. By constructing the octree structure of the point cloud, the corresponding node code is obtained according to the spatial coordinates of the point cloud, and the feature vector of the node is calculated based on the analysis of covariance. Node feature similarity is introduced to distinguish the node into feature and non-feature nodes, forming the node feature code, and the layer threshold is introduced to filter outliers. Experimental results showed that this approach is effective in removing noise while preserving important features, thereby reducing the complexity of the point cloud. The algorithm can serve as a reference for fast and precise measurement that demands high timeliness owing to its high computational efficiency.