This report investigates the flight dynamics of a small-scale (2 ft) towed system using a quadcopter and actively controlled payload. A towed system includes a main driver to propel the system forward connected to a payload via a tether. The towed system here is unique, and in that the driver is a scratch built quadcopter while the payload is also a scratch built actively controlled aircraft. The payload is designed to carry a small instrument that must be sufficiently far away from all interferences created by a quadcopter. A fully non-linear full state model is created and utilized to reveal that oscillations in the payload are decreased with the introduction of a PD controller on the payload. An experimental setup is built to validate simulation results. Experiments show that an actively controlled payload can decrease the attitude oscillations of the payload.