We have developed detailed emission inventories for the amount of both black and organic carbon particles from biomass burning sources (wood fuel, charcoal burning, dung, charcoal production, agricultural, savanna and forest fires). We have also estimated an inventory for organic carbon particles from fossil fuel burning and urban activities from an existing inventory for fossil fuel sources of black carbon. We also provide an estimate for the natural source of organic matter. These emissions have been used together with our global aerosol model to study the global distribution of carbonaceous aerosols. The accuracy of the inventories and the model formulation has been tested by comparing the model simulations of carbonaceous aerosols in the atmosphere and in precipitation with observations reported in the literature. For most locations and seasons, the predicted concentrations are in reasonable agreement with the observations, although the model underpredicts black carbon concentrations in polar regions. The predicted concentrations in remote areas are extremely sensitive to both the rate of removal by wet deposition and the height of injection of the aerosols. Finally, a global map of the aerosol single scattering albedo was developed from the simulated carbonaceous particle distribution and a previously developed model for aerosol sulfates. The computed aerosol single scattering albedos compare well with observations, suggesting that most of the important aerosol species have been included in the model. For most locations and seasons, the single scattering albedo is larger than 0.85, indicating that these aerosols, in general, lead to a net cooling.