The last main contribution of the work is the characterization of the FPGA-based SOM. This evaluation is important because, although similar, the computing processes of neural models in hardware are not necessarily identical to the same processes implemented in software. Hence, this contribution can be described as the analysis of the impact of the implemented changes, regarding the FPGA-based SOM compared to traditional algorithms. The comparison was performed evaluating the measures of topographic and quantization errors for the outputs produced by both implementations. This work also generated medium impact contributions, which can be divided into two groups: empirical and theoretical. The first empirical contribution is the survey of SOM applications which can be made possible by hardware implementations. The papers presented in this survey are classified according to their research areasuch as Industry, Robotics and Medicineand, in general, they use SOM in applications that require computational speed or embedded processing. Therefore, the continuity of their developments is benefited by direct hardware implementations of the neural network. The other two empirical contributions are the applications employed for testing the circuits developed. The first application is related to the reception of telecommunications signals and aims to identify 16-QAM and 64-QAM symbols. These two modulation techniques are used in a variety of applications with mobility requirements, such as cell phones, digital TV on portable devices and Wi-Fi. The SOM is used to identify QAM distorted signals received with noise. This research work was published in the Springer Journal on Neural Computing and Applications: Sousa; Pires e Del-Moral-Hernandez (2017). The second is an image processing application and it aims to recognize human actions captured by video cameras. Autonomous image processing performed by FPGA chips inside video cameras can be used in different scenarios, such as automatic surveillance systems or remote assistance in public areas. This second application is also characterized by demanding high performance from the computing architectures. All the theoretical contributions with medium impact are related to the study of the properties of hardware circuits for implementing the SOM model. The first of these is the proposal of an FPGA-based neighborhood function. The aim of the proposal is to develop a computational function to be implemented on chip that enables an efficient