2022
DOI: 10.48550/arxiv.2204.09169
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Scalable Deep Learning Framework for Multi-rate CSI Feedback under Variable Antenna Ports

Abstract: Channel state information (CSI) at transmitter is crucial for massive MIMO downlink systems to achieve high spectrum and energy efficiency. Existing works have provided deep learning architectures for CSI feedback and recovery at the eNB/gNB by reducing user feedback overhead and improving recovery accuracy. However, existing DL architectures tend to be inflexible and non-scalable as models are often trained according to a preset number of antennas for a given compression ratio. In this work, we develop a flex… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?