This work presents the GPU acceleration of the open-source code CaNS for very fast massively-parallel simulations of canonical fluid flows. The distinct feature of the many-CPU Navier-Stokes solver in CaNS is its fast direct solver for the second-order finite-difference Poisson equation, based on the method of eigenfunction expansions. The solver implements all the boundary conditions valid for this type of problems in a unified framework. Here, we extend the solver for GPU-accelerated clusters using CUDA Fortran. The porting makes extensive use of CUF kernels and has been greatly simplified by the unified memory feature of CUDA Fortran, which handles the data migration between host (CPU) and device (GPU) without defining new arrays in the source code. The overall open-source under the terms of an MIT license.