Semi-cooperative games in strategic form are considered in which either a negotiation among the n players determines their actions or else an arbitrator specifies them. Methods are presented for selecting such action profiles by using multiple-objective optimization techniques. In particular, a scalar equilibrium (SE) is an action profile for the n players that maximize a utility function over the acceptable joint actions. Thus the selection of "solutions" to the game involves the selection of an acceptable utility function. In a greedy SE, the goal is to assign individual actions giving each player the largest payoff jointly possible. In a compromise SE, the goal is to make individual player payoffs equitable, while a satisficing SE achieves a target payoff level while weighting each player for possible additional payoff. These SEs are formally defined and shown to be Pareto optimal over the acceptable joint actions of the players. The advantage of these SEs is that they involve only pure strategies that are easily computed. Examples are given, including some well-known coordination games, and the worst-case time complexity for obtaining these SEs is shown to be linear in the number of individual payoffs in the payoff matrix. Finally, the SEs of this paper are checked against some standard game-theoretic bargaining axioms.