Multiple scattering inside the random medium limits the imaging depth of optical coherence tomography (OCT) to 1-2 mm, as well as the degree of focus at the deep imaging depth. In this paper, by combining the concept of matrix measurement with a wide-field optical coherence tomography, we have done two aspects of work. The first one is for deeper imaging depth. By reconstructing the huge reflection matrix of the sample and then applying a time-reversal operation to it, we successfully filter out the single scattered light for imaging at the depth of 15 times of the scattering mean free path (SMFP). Since the imaging depth of conventional OCT is 6-7 times of the SMFP, our proposed reflection matrix optical coherence tomography (RMOCT) is about one time deeper than the conventional OCT. The second part of the work is a high-speed wavefront shaping (WFS) method based on a one-time in-and-out complex light field analysis. With the help of a phase-only spatial light modulator, we realize the light focusing through a random medium is ~113 ms. It is about three times faster than the iterative feedback wavefront shaping method. We believe that our work might pave the way to apply WFS to optical imaging methods and open new methods toward deeper imaging through a scattering medium.