It is crucial to design quantum circuits as small as possible and as shallow as possible for quantum information processing tasks. We design quantum circuits with simplified gate-count, cost, and depth for implementing quantum teleportation among various entangled channels. Here the gate-count/cost/depth of the Greenberger-Horne-Zeilinger-based quantum teleportation is reduced from 10/6/8 to 9/4/6, the two-qubit-cluster-based quantum teleportation is reduced from 9/4/5 to 6/3/5, the three-qubit-cluster-based quantum teleportation is reduced from 12/6/7 to 8/4/5, the Brown-based quantum teleportation is reduced from 25/15/17 to 18/8/7, the Borras-based quantum teleportation is reduced from 36/25/20 to 15/8/11, and the entanglement-swapping-based quantum teleportation is reduced from 13/8/8 to 10/5/5. Note that, no feed-forward recover operation is required in the simplified schemes. Moreover, the experimentally demonstrations on IBM quantum computer indicate that our simplified and compressed schemes can be realized with good fidelity.