The salmon louse, Lepeophtheirus salmonis Krøyer, is the major obstacle facing a sustainable future for farmers of salmonids in the North Atlantic Ocean. Medicinal compounds have been the most utilized tool to prevent salmon lice infestation; however, the active compounds have become less effective or considered environmentally unfriendly in the past years. Novel medicinal compounds are thus highly desired. In two experiment series, 26 medicinal compounds were screened for their efficacy against salmon lice, in a 30-min exposure and 24-h exposure, respectively. Pyriprole, imidacloprid, cartap and spinetoram were effective at 50 mg L(-1) in the short-time exposure. In the 24-h exposure, pyriprole, propoxur, cartap, imidacloprid, fenoxycarb, pyriproxyfen, nitenpyram, spinetoram, spiromesifen and diflubenzuron induced a high level of immobilization at 5 mg L(-1) . The EC50 values of the effective compounds were calculated in further titration studies for both exposure periods. Several physiological and biochemical pathways were discovered as possible targets for medicinal intervention against the salmon louse.