Herpesviruses
rely on a homodimeric protease for viral capsid maturation.
A small molecule, DD2, previously shown to disrupt dimerization of
Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr)
by trapping an inactive monomeric conformation and two analogues generated
through carboxylate bioisosteric replacement (compounds 2 and 3) were shown to inhibit the associated proteases
of all three human herpesvirus (HHV) subfamilies (α, β,
and γ). Inhibition data reveal that compound 2 has
potency comparable to or better than that of DD2 against the tested
proteases. Nuclear magnetic resonance spectroscopy and a new application
of the kinetic analysis developed by Zhang and Poorman [Zhang, Z.
Y., Poorman, R. A., et al. (1991) J. Biol. Chem. 266, 15591–15594] show DD2, compound 2, and compound 3 inhibit HHV proteases by dimer disruption. All three compounds
bind the dimer interface of other HHV proteases in a manner analogous
to binding of DD2 to KSHV protease. The determination and analysis
of cocrystal structures of both analogues with the KSHV Pr monomer
verify and elaborate on the mode of binding for this chemical scaffold,
explaining a newly observed critical structure–activity relationship.
These results reveal a prototypical chemical scaffold for broad-spectrum
allosteric inhibition of human herpesvirus proteases and an approach
for the identification of small molecules that allosterically regulate
protein activity by targeting protein–protein interactions.