The adaptive multi-rate wideband (AMR-WB) speech codec is widely used in modern mobile communication systems for high speech quality in handheld devices. Nonetheless, a major disadvantage is that vector quantization (VQ) of immittance spectral frequency (ISF) coefficients takes a considerable computational load in the AMR-WB coding. Accordingly, a binary search space-structured VQ (BSS-VQ) algorithm is adopted to efficiently reduce the complexity of ISF quantization in AMR-WB. This search algorithm is done through a fast locating technique combined with lookup tables, such that an input vector is efficiently assigned to a subspace where relatively few codeword searches are required to be executed. In terms of overall search performance, this work is experimentally validated as a superior search algorithm relative to a multiple triangular inequality elimination (MTIE), a TIE with dynamic and intersection mechanisms (DI-TIE), and an equal-average equal-variance equal-norm nearest neighbor search (EEENNS) approach. With a full search algorithm as a benchmark for overall search load comparison, this work provides an 87% search load reduction at a threshold of quantization accuracy of 0.96, a figure far beyond 55% in the MTIE, 76% in the EEENNS approach, and 83% in the DI-TIE approach.