Aquaporins facilitate efficient diffusion of water across cellular membranes, and water homeostasis is critically important in conditions such as cerebral edema. Changes in aquaporin 1 and 4 expression in the brain are associated with cerebral edema, and the lack of water channel modulators is often highlighted. Here we present evidence of an endogenous modulator of aquaporin 1 and 4. We identify miR-320a as a potential modulator of aquaporin 1 and 4 and explore the possibility of using miR-320a to alter the expression of aquaporin 1 and 4 in normal and ischemic conditions. We show that precursor miR-320a can function as an inhibitor, whereas anti-miR-320a can act as an activator of aquaporin 1 and 4 expressions. We have also shown that antimiR-320a could bring about a reduction of infarct volume in cerebral ischemia with a concomitant increase in aquaporins 1 and 4 mRNA and protein expression.
MicroRNAs (miRNAs)2 regulate mRNA expression by binding to the 3Ј-UTR (1). As simple as it sounds, identifying targets for miRNAs remains a challenging task mainly because each miRNA has hundreds of mRNA targets (2). Increasing this complexity are emerging reports on miRNAs binding at 5Ј-UTR as well as promoter regions (3-5). Recent studies also reveal the possibility of miRNAs functioning as transcriptional or splicing regulators within the nucleus (6) and being involved in genetic exchange via exosomes with adjacent cells (7). Because of this complexity in regulation, of the hundreds of miRNAs identified in the human species, only a handful have been assigned their specific targets.Comparison of miRNA profiles between normal and diseased samples allows the identification of crucial miRNAs that are altered during disease conditions and enables one to search for possibilities of altering these expression profiles in an attempt to normalize or reduce the patho-physiological conditions of the disease. Changes in the expression of miRNAs have been reported in several diseases (8 -10) including cerebral ischemia (11-13). Cerebral ischemia is a highly debilitating condition, and ischemia-induced edema further increases complications and morbidity (14). The movement of water into and out of an ischemic brain is thought to be mainly modulated by aquaporins (AQPs), especially aquaporin 1 (AQP1) and aquaporin 4 (AQP4). AQPs are a family of transmembrane proteins involved in transport of water, glycerol, ions, and even CO 2 (15, 16). The 13-member family is ubiquitously expressed in almost all parts of the human body. Often more than one homolog is found to be present in any tissue or organ. In the brain AQP1, 3, 4, 5, 8, and 9 have been reported, with AQP1, 4, and 9 being expressed abundantly (17). The importance of AQP1 and AQP4 regulation in edema has been highlighted in several studies (18,19). AQP4 knockouts in mice showed increased protection against cytotoxic edema caused by water intoxication and permanent focal cerebral ischemia, whereas in conditions leading to vasogenic brain edema, it had a deleterious effect (18,19). s...