Smart objects and home automation tools are becoming increasingly popular, and the number of smart devices that each dedicated application has to manage is increasing accordingly. The emergence of technologies such as serverless computing and dedicated machine-to-machine communication protocols represents a valuable opportunity to facilitate management of smart objects and replicability of new solutions. The aim of this paper is to propose a framework for home automation applications that can be applied to control and monitor any appliance or object in a smart home environment. The proposed framework makes use of a dedicated messages-exchange protocol based on MQTT and cloud-deployed serverless functions. Furthermore, a vocal command interface is implemented to let users control the smart object with vocal interactions, greatly increasing the accessibility and intuitiveness of the proposed solution. A smart object, namely a smart kitchen fan extractor system, was developed, prototyped, and tested to illustrate the viability of the proposed solution. The smart object is equipped with a narrowband IoT (NB-IoT) module to send and receive commands to and from the cloud. In order to evaluate the performance of the proposed solution, the suitability of NB-IoT for the transmission of MQTT messages was evaluated. The results show how NB-IoT has an acceptable latency performance despite some minimal packet loss.