We propose a set of protocols for quantum anonymous veto (QAV) broadly categorized under the probabilistic, iterative, and deterministic schemes. The schemes are based upon different types of quantum resources. Specifically, they may be viewed as single photon-based, bipartite and multipartite entangled states-based, orthogonal state-based and conjugate coding-based. The set of the proposed schemes is analyzed for all the requirements of a valid QAV scheme (e.g., privacy, verifiability, robustness, binding, eligibility and correctness). The proposed schemes are observed to be more efficient in comparison to the existing QAV schemes and robust up to the moderate decoherence rate. In addition, a trade-off between correctness and robustness of the probabilistic QAV schemes is observed. Further, the multipartite dense coding based determinsitic QAV scheme is most efficient scheme among the set of schemes proposed here. A bipartite entanglement based iterative scheme employing dense coding is yet another efficient and practical scheme. The intrinsic connections between dining cryptographer-net with anonymous veto-net is also explored in the process of designing new protocols.