Abstract-The smart grid, as the next generation of the power grid, is characterized by employing many different types of intelligent devices, such as intelligent electronic devices located at substations, smart meters positioned in the home area network, and outdoor field equipment deployed in the fields. Also, there are various users in the smart grid network, including customers, operators, maintenance personnel, and etc., who use these devices for various purposes. Therefore, a secure and efficient mutual authentication and authorization scheme is needed in the smart grid to prevent various insider and outsider attacks on many different devices. In this paper, we propose an authentication and authorization scheme for mitigating outsider and insider threats in the smart grid by verifying the user authorization and performing the user authentication together whenever a user accesses the devices. The proposed scheme computes each user-role dynamically using an attribute-based access control and verifies the identity of user together with the device. Security and performance analysis show that the proposed scheme resists various insider as well as outsider attacks, and is more efficient in terms of communication and computation costs in comparison with the existing schemes. The correctness of the proposed scheme is also proved using BAN-Logic and Proverif.