Long term usage of the selective estrogen receptor modulator (SERM) tamoxifen has been associated with an increased risk of endometrial cancer. One potential mechanism of tamoxifen induced carcinogenesis involves metabolism to reactive intermediates, such as an o-quinone, quinone methide, and carbocation. We have previously shown that the benzothiophene SERMs, raloxifene and desmethylated arzoxifene (DMA), can also be bioactivated to electrophilic quinoids by rat/human liver microsomes and rat hepatocytes. Since the uterus is a major target tissue of estrogens and antiestrogens, it was of interest to determine if quinoids could be formed from SERMs in uterine tissue potentially producing cytotoxic effects. Incubations with rat uterine microsomes showed that both raloxifene and DMA could be oxidized to electrophilic di-quinone methides that were trapped as the corresponding GSH conjugates. A new raloxifene GSH-dependent conjugate was identified as raloxifene Cys-Gly that was formed from the hydrolysis of 7-glutathinyl raloxifene by γ-glutamyl transpeptidase. Interestingly, the metabolism of raloxifene and DMA in rat uterine microsomes was not NADPH-dependent and could be inhibited by cyanide and NADPH or enhanced by H 2 O 2 . In addition, co-incubations with the peroxidase substrates guaiacol or o-phenlyenediamine inhibited diquinone methide GSH conjugate formation from both SERMs. Incubations of raloxifene and DMA with horseradish peroxidase (HRP) were studied as models of the interaction between benzothiophene SERMs and peroxidase. The results showed that HRP could directly oxidize raloxifene and DMA to the corresponding dimers via the formation of phenoxyl radicals in the absence of exogenous hydrogen peroxide. In addition, GSH appears to be involved in multiple peroxidase-catalyzed oxidative metabolic pathways of benzothiophene SERMs. Finally, COATag (Covert Oxidatively Activated Tag) methodology, which involves the utilization of biotin conjugated raloxifene and DMA, was used in order to identify target proteins by affinity chromatography.Incubations of raloxifene and DMA COATags with rat uterine microsomes showed several modified proteins by western blot analysis. The protein modification could be enhanced by the addition of H 2 O 2 and decreased by the addition of NADPH suggesting that unlike liver metabolism the formation of quinoids in the uterus could be mediated by uterine peroxidases.