2020
DOI: 10.22266/ijies2020.1231.36
|View full text |Cite
|
Sign up to set email alerts
|

A Self-adaptive Hybrid Bio-inspired Optimization Algorithm by Using Sigmoidal Function

Abstract: The article presents a new hybrid algorithm, which designs based on traditional bio-inspired optimization algorithms. The algorithm leverages the advantage of Particle Swarm Optimization (PSO), Differential Evolution (DE), and Artificial Bee Colony (ABC), replacing other algorithm weaknesses. A new algorithm we proposed is the Fast bio-inspired Optimization Algorithm (FOA). The DE uses multi-parent for trial vector calculation. It increases the diversity of the solution, while the sigmoidal function adds a sel… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?