Proceedings of the ACM Web Conference 2023 2023
DOI: 10.1145/3543507.3583479
|View full text |Cite
|
Sign up to set email alerts
|

A Self-Correcting Sequential Recommender

Abstract: Sequential recommendations aim to capture users' preferences from their historical interactions so as to predict the next item that they will interact with. Sequential recommendation methods usually assume that all items in a user's historical interactions reflect her/his preferences and transition patterns between items. However, real-world interaction data is imperfect in that (i) users might erroneously click on items, i.e., so-called misclicks on irrelevant items, and (ii) users might miss items, i.e., une… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 51 publications
0
0
0
Order By: Relevance