2012
DOI: 10.1239/aap/1339878720
|View full text |Cite
|
Sign up to set email alerts
|

A Self-Normalized Central Limit Theorem for Markov Random Walks

Abstract: Motivated by the study of the asymptotic normality of the least-squares estimator in the (autoregressive) AR(1) model under possibly infinite variance, in this paper we investigate a self-normalized central limit theorem for Markov random walks. That is, let {Xn, n ≥ 0} be a Markov chain on a general state space X with transition probability P and invariant measure π. Suppose that an additive component Sn takes values on the real line , and is adjoined to the chain such that {Sn, n ≥ 1} is a Markov random walk… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2013
2013
2013
2013

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 31 publications
0
0
0
Order By: Relevance