Abstract:Motivated by the study of the asymptotic normality of the least-squares estimator in the (autoregressive) AR(1) model under possibly infinite variance, in this paper we investigate a self-normalized central limit theorem for Markov random walks. That is, let {Xn, n ≥ 0} be a Markov chain on a general state space X with transition probability P and invariant measure π. Suppose that an additive component Sn takes values on the real line , and is adjoined to the chain such that {Sn, n ≥ 1} is a Markov random walk… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.