Pressure ulcers (PUs) are a serious global health challenge, affecting a large section of the population and putting immense pressure on healthcare systems. Sensor-based diagnostic tools and monitoring systems have emerged as a potential non-invasive solution to reduce the occurrence of new cases of PUs and promise a significant reduction in treatment expenditure and time. In this endeavour, the present manuscript reviews the advancements made in the last decade in the development and commercial adoption of different sensor systems for PU-associated chronic wound management. Different types of smart sensor systems have been developed in which pressure, chemical, and optical sensors have witnessed a lot of interest and significant advancement among research communities and industries alike. These sensors utilize a host of nanomaterial-based sensing materials, flexible support, diverse transducing modes, and different device designs to achieve high sensitivity and selectivity for skin pressure, temperature, humidity, and biomarkers released from the wound. Some of these sensor’s array-based electronic skin (e-skin) has reached the stage of commercialization and is being used in commercial products, such as smart bandages, shoes, watches, and mattress among others. Nonetheless, further innovations are necessary in the direction of associating multiple types of sensor arrays, particularly pressure and chemical sensor-based e-skins in a microsystem for performing real-time assessment of all the critical wound parameters.