In this paper, for the first time, experimental tests of complete offline walking gaits generated by the essential model are performed. This model does not make simplifications in the dynamics of the robot, and its main advantage is the definition of desired Zero Moment Point trajectories. The designed gaits are implemented in the NAO robot, where starting and stopping stages are also included. Simulations in MATLAB and Webots, and experiments with the real robot are shown. Also, important remarks about the implementation of walking trajectories in the NAO robot are included, such as dealing with the hip joint shared by both legs. A comparison between the linear inverted pendulum (LIP) model and the essential model is also addressed in the experiments. As expected, the robot fails following the offline gait generated by the LIP model, but it does not with the essential model. Moreover, in order to push the boundaries of the essential model, a complex gait is designed with a vertical motion of the center of mass and an abrupt movement of the arms. As shown in experiments, no external balance controller is required to perform this complex gait. Thus, the efficiency of the essential model to design stable open-loop complex gaits is verified.