2023
DOI: 10.3389/fgene.2023.1132370
|View full text |Cite
|
Sign up to set email alerts
|

A self-training subspace clustering algorithm based on adaptive confidence for gene expression data

Abstract: Gene clustering is one of the important techniques to identify co-expressed gene groups from gene expression data, which provides a powerful tool for investigating functional relationships of genes in biological process. Self-training is a kind of important semi-supervised learning method and has exhibited good performance on gene clustering problem. However, the self-training process inevitably suffers from mislabeling, the accumulation of which will lead to the degradation of semi-supervised learning perform… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?