Spiral groove is one of the most common types of structures on gas mechanical seals. Numerical research demonstrated that the grooves designed for improving gas film lift or film stiffness often lead to the leakage increase. Hence, a multi-objective optimization approach specially for conflicting objectives is utilized to optimize the spiral grooves for a specific sample in this study. First, the objectives and independent variables in multi-objective optimization are determined by single objective analysis. Then, a set of optimal parameters, i.e., Pareto-optimal set, is obtained. Each solution in this set can get the highest dimensionless gas film lift under a specific requirement of the dimensionless leakage rate. Finally, the collinearity diagnostics is performed to evaluate the importance of different independent variables in the optimization.