Abstract:Principal Component Analysis (PCA) is a well known procedure to reduce intrinsic complexity of a dataset, essentially through simplifying the covariance structure or the correlation structure. We introduce a novel algebraic, model-based point of view and provide in particular an extension of the PCA to distributions without second moments by formulating the PCA as a best low rank approximation problem. In contrast to hitherto existing approaches, the approximation is based on a kind of spectral representation,… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.