SUMMARYWe describe the low Mach number equations as well as a second-order numerical integration procedure that are used to solve a realistic chemical vapor infiltration/chemical vapor deposition (CVI/CVD) problem. The simulation accounts for a homogeneous gas chemical reaction mechanism, a heterogeneous surface reaction mechanism, and an evolving pore structure model. The numerical solution of the model ultimately leads to the solution of a large system of stiff differential algebraic equations that are to be integrated over a long time. An operator splitting algorithm is employed to deal with the stiffness associated with chemical reactions, whereas a projection method is employed to overcome the difficulty arising from having to solve a large coupled system for velocity and pressure fields. Results show that the proposed integration procedure is very efficient for modeling long time CVI/CVD densification processes.