2019
DOI: 10.18280/i2m.180611
|View full text |Cite
|
Sign up to set email alerts
|

A Semi-supervised Sparse Representation Neural Network for Error Estimation of Electricity Meters with Insufficient Tagged Samples

Abstract: Once installed, the electricity meters will face a huge variation in operating conditions, which exerts a major influence on the measuring accuracy. Thus, it is imperative to develop an effective way to estimate the errors of electricity meters in varied operating conditions. Considering the limited sample size, this paper develops a semi-supervised sparse representation (SSR) algorithm for error estimation of electricity meters with insufficient tagged samples. Each sample was considered a combination of two … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 23 publications
0
1
0
Order By: Relevance
“…The multi-layer perceptron (MLP) model is the most widely applied neural network structure used in classification methods. The main objective of the proposed improved algorithm is to obtain the best variable parameters of the MLP model, so that the model can apply the batch learning BP algorithm to classify the given data set [20].…”
Section: An Classification Algorithm Based On the Improved Batch Learmentioning
confidence: 99%
“…The multi-layer perceptron (MLP) model is the most widely applied neural network structure used in classification methods. The main objective of the proposed improved algorithm is to obtain the best variable parameters of the MLP model, so that the model can apply the batch learning BP algorithm to classify the given data set [20].…”
Section: An Classification Algorithm Based On the Improved Batch Learmentioning
confidence: 99%