Polymer microgels in the size range from several micrometers to hundreds of micrometers are used in the pharmaceutical, cosmetics, nutrition, pesticide, and food industries, as well as in the encapsulation of cells. To date, a broad range of strategies for the generation of polymer microgels exist, however, these methods involve multistage processes, do not utilize biocompatible components or do not allow precise control of the dimensions and internal structure of the microgels. Recently, microfluidic strategies for the production of polymer particles have offered precise control over the shapes, morphologies, and size distributions of polymer colloids. This paper discusses the most recent results obtained by the authors in the area of the microfluidic production of biopolymer microgels. It provides a brief review of the microfluidic methods for the continuous synthesis and fabrication of microgels, sets the criteria for the successful microfluidic generation of biomicrogels, and describes two methods for the preparation of microgels by microfluidic means. The article concludes with a summary and an outlook.magnified image