The aim of this review was to summarize information and scientific data from the literature dedicated to the fate of polyacrylamide (PAM)-based flocculants in hydrosystems. Flocculants, usually composed of PAMs, are widely used in several industrial fields, particularly in minerals extraction, to enhance solid/liquid separation in water containing suspended matter. These polymers can contain residual monomer of acrylamide (AMD), which is known to be a toxic compound. This review focuses on the mechanisms of transfer and degradation, which can affect both PAM and residual AMD, with a special attention given to the potential release of AMD during PAM degradation. Due to the ability of PAM to adsorb onto mineral particles, its transport in surface water, groundwater, and soils is rather limited and restricted to specific conditions. PAM can also be a subject of biodegradation, photodegradation, and mechanical degradation, but most of the studies report slow degradation rates without AMD release. On the contrary, the adsorption of AMD onto particles is very low, which could favor its transfer in surface waters and groundwater. However, AMD transfer is likely to be limited by quick microbial degradation.