5,10,15,-21H,23H-porphine (TPAPP) possesses good light-harvesting ability and photoelectrochemical (PEC) cathode response signal; however, the disadvantages of easy stacking and weak hydrophilicity limit its application as a signal probe in PEC biosensors. Based on these, we prepared a Fe 3+ and Cu 2+ co-coordinating photoactive material (TPAPP-Fe/Cu) with horseradish peroxidase (HRP)-like activity. The metal ions in the porphyrin center not only enabled the directional flow of photogenerated electrons between electron-rich porphyrin and positive metal ions within inner-/intermolecular layers but also accelerated electron transfer through a synergistic redox reaction of Fe(III)/Fe(II) and Cu(II)/Cu(I) as well as rapid generation of superoxide anion radicals (O 2 −• ) by mimicking catalytically produced and dissolved oxygen, thereby providing the desired cathode photoactive material with extremely high photoelectric conversion efficiency. Accordingly, by combining with toehold-mediated strand displacement (TSD)-induced single cycle and polymerization and isomerization cyclic amplification (PICA), an ultrasensitive PEC biosensor was constructed for the detection of colon cancer-related miRNA-182-5p. The ultratrace target could be converted to abundant output DNA by TSD possessing the desirable amplifying ability to trigger PICA for forming long ssDNA with repetitive sequences, thus decorating substantial TPAPP-Fe/Cu-labeled DNA signal probes for producing high PEC photocurrent. Meanwhile, the Mn(III) mesotetraphenylporphine chloride (MnPP) was embedded in dsDNA to further exhibit a sensitization effect toward TPAPP-Fe/Cu and an acceleration effect analogous to that of metal ions in the porphyrin center above. As a result, the proposed biosensor displayed a detection limit as low as 0.2 fM, facilitating the development of high-performance biosensors and showing great potential in early clinical diagnosis.