The two monoclonal antibodies (mAb), L6 (anti-carcinoma), and 1F5 [anti-(B-cell-lymphoma)], were chemically linked to the enzyme penicillin-V amidase (PVA), which hydrolyzes phenoxyacetamides, to explore the potential of using mAb-enzyme conjugates for the localization of chemotherapeutic drugs at tumor cells. The phenoxyacetamide derivatives of doxorubicin and melphalan were prepared, yielding the less toxic amides, doxorubicin-N-p-hydroxyphenoxyacetamide (DPO) and melphalan-N-p-hydroxyphenoxyacetamide (MelPO). These were hydrolyzed by PVA to doxorubicin and melphalan respectively. In vitro studies with the L6-positive lung carcinoma cell line, H2981, and the 1F5-positive B-cell lymphoma line, Daudi, showed that DPO was 80-fold less toxic to H2981 cells and 20-fold less toxic to Daudi cells than doxorubicin, and its toxicity was substantially increased when the H2981 cells were pretreated with L6-PVA or the Daudi cells were pretreated with 1F5-PVA. The cytotoxic effect was antigen-specific, since only the binding mAb-enzyme conjugate increased the cytotoxicity of the prodrug. MelPO was more than 1000-fold less toxic than melphalan to H2981 cells and more than 100-fold less toxic than melphalan to Daudi cells. Pretreatment with the mAb-PVA conjugates did not enhance the toxicity of MelPO in either cell line, because PVA hydrolyzes the phenoxyacetamide bond of MelPO too slowly to generate a toxic level of melphalan.