The detection of electric fields in the environment has great importance for understanding various natural phenomena, environmental monitoring, and ensuring human safety. This review paper provides an overview of the current state-of-the-art technologies utilized for sensing electric fields in the environment, the challenges encountered, and the diverse applications of this sensing technology. The technology is divided into three categories according to the differences in the physical mechanism: the electro-optic effect-based measurement system, the MEMS-based sensor, and the newly reported quantum effect-based sensors. The principles of the underlying methods are comprehensively introduced, and the tentative applications for each type are discussed. Detailed comparisons of the three different techniques are identified and discussed with regard to the instrument, its sensitivity, and bandwidth. Additionally, the challenges faced in environmental electric field sensing, the potential solutions, and future development directions are addressed.