A mathematical method for the forecast of the type of structure in the steel static ingot has been recently developed. Currently, the method has been applied to structural zones prediction in the brass ingots obtained by the continuous casting. Both the temperature field and thermal gradient field have been calculated in order to predict mathematically the existence of some structural zones in the solidifying brass ingot. Particularly, the velocity of the liquidus isotherm movement and thermal gradient behavior versus solidification time have been considered. The analysis of the mentioned velocity allows the conclusion that the brass ingots can evince: chilled columnar grains-, (CC), fine columnar grains-, (FC), columnar grains-, (C), equiaxed grains zone, (E), and even the single crystal, (SC), situated axially. The role of the mentioned morphologies is analyzed to decide whether the hard particles existing in the brass ingots can be swallowed or rejected by the solid / liquid (s/l) interface of a given type of the growing grains. It is suggested that the columnar grains push the hard particles to the end of a brass ingot during its continuous casting.