The degree to which Permo-Carboniferous cyclothemic successions archive evidence for longterm variations in ice volume during the Late Paleozoic Ice Age is insufficiently resolved. Here we develop the sequence stratigraphy and onlap-offlap history for a 33-my interval of the Carboniferous using the U-Pb calibrated succession of the Donets Basin, Ukraine, in order to assess the relationship between sea-level, high-latitude changes in glacial extent, and climate. Integrated subsurface and outcrop data permit meter-scale correlation of 242 biostratigraphically constrained limestones and coals, and in turn individual cyclothems, across ~250 km of the Donets Basin. Rapid uniform subsidence and basinwide continuity of marker beds indicate Pennsylvanian deposition under relatively stable tectonic conditions. Three scales of sequences (avg. durations of ~140 ky, ~480 ky and 1.6 my) are recognized on the basis of stratigraphic stacking patterns and basinwide architecture of marine to terrestrial facies assemblages.The hierarchy of sequences and the geographic and stratigraphic positions of shifts in base-level sensitive facies across the Donets ramp permit the construction of an onlap-offlap history at a sub-400 ky scale. Major sea-level lowstands occur across the mid-Carboniferous boundary and during the early Moscovian. These lowstands coincide with glacial maxima inferred from highlatitude glacigenic deposits. The middle to late Pennsylvanian is characterized by a stepwise onlap, culminating in an earliest Gzhelian highstand, suggesting contraction of Carboniferous ice sheets prior to the initiation of Early Permian glaciation.The stratigraphic position of climate sensitive facies within individual Donets cyclothems indicates a turnover from seasonal sub-humid or semi-arid climate to everwet conditions during the late lowstand and maximum ice sheet accumulation. Comparison of the stratigraphic and aerial distribution of coals and evaporites in the Donets Basin with the onlap-offlap history further indicates everwet conditions during lowstands and inferred glacial maxima and drier climate during onlap and inferred ice sheet contraction at the intermediate (~0.8 to 1.6 my) and long (10 6 yr) time-scales. Taken together, the relationship between inferred climate and glacioeustasy suggests a likely teleconnection between high-latitude ice sheet behavior and low-latitude atmospheric dynamics.