Abstract:This paper presents a serial and parallel genetic based learnable bayesian classifier for designing a prognostic model for metabolic syndrome. The objective of the classifier is to address the fundamental problem of finding the optimal weight in the learnable bayesian classifier, by serial GA, and minimize the response time by parallel GA. The algorithms exhibit an improved capability to eliminate spurious features from the large dataset and aid the researchers in identifying those features that are solely res… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.