Studies of worldwide human variation have discovered three trends in summary statistics as a function of increasing geographic distance from East Africa: a decrease in heterozygosity, an increase in linkage disequilibrium (LD), and a decrease in the slope of the ancestral allele frequency spectrum. Forward simulations of unlinked loci have shown that the decline in heterozygosity can be described by a serial founder model, in which populations migrate outward from Africa through a process where each of a series of populations is formed from a subset of the previous population in the outward expansion. Here, we extend this approach by developing a retrospective coalescent-based serial founder model that incorporates linked loci. Our model both recovers the observed decline in heterozygosity with increasing distance from Africa and produces the patterns observed in LD and the ancestral allele frequency spectrum. Surprisingly, although migration between neighboring populations and limited admixture between modern and archaic humans can be accommodated in the model while continuing to explain the three trends, a competing model in which a wave of outward modern human migration expands into a series of preexisting archaic populations produces nearly opposite patterns to those observed in the data. We conclude by developing a simpler model to illustrate that the feature that permits the serial founder model but not the archaic persistence model to explain the three trends observed with increasing distance from Africa is its incorporation of a cumulative effect of genetic drift as humans colonized the world.T he nature of the origin and geographic spread of anatomically modern humans has been the focus of much recent interest in anthropology and genetics (1-6), with considerable effort having been centered on the potential contribution of archaic hominids to the modern human gene pool (7-12). Within this context, population-genetic studies have examined a variety of aspects of worldwide human variation, identifying several striking geographical patterns in statistics that describe human genetic diversity (Fig. 1). First, the level of genetic variation, as measured by heterozygosity, exhibits a linear decline as a function of geographic distance from Africa (13-15). Second, LD increases linearly as a function of geographic distance from Africa (16). Third, the ancestral allele frequency spectrum ''flattens'' with increasing geographic distance from Africa, indicating that derived alleles tend to be more frequent in populations at a greater distance away from Africa (15).These three patterns point to an important role for Africa in the history of human genetic variation. Thus, many models involving migrations outward from Africa have been proposed for providing simulation-based explanations of geographical patterns in human genetic data. This collection of models includes coalescent-based migration models that proceed retrospectively in time and that are easily simulated, but that involve relatively few populations, each...