Preliminary screening of the Malagasy plant Combretum albiflorum for compounds attenuating the production of quorum sensing (QS)-controlled virulence factors in bacteria led to the identification of active fractions containing flavonoids. In the present study, several flavonoids belonging to the flavone, flavanone, flavonol and chalcone structural groups were screened for their capacity to reduce the production of QS-controlled factors in the opportunistic pathogen Pseudomonas aeruginosa (strain PAO1). Flavanones (i.e. naringenin, eriodictyol and taxifolin) significantly reduced the production of pyocyanin and elastase in P. aeruginosa without affecting bacterial growth. Consistently, naringenin and taxifolin reduced the expression of several QS-controlled genes (i.e. lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1 and rhlA) in P. aeruginosa PAO1. Naringenin also dramatically reduced the production of the acylhomoserine lactones N-(3-oxododecanoyl)-Lhomoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), which is driven by the lasI and rhlI gene products, respectively. In addition, using mutant strains deficient for autoinduction (DlasI and DrhlI) and LasR-and RhlR-based biosensors, it was shown that QS inhibition by naringenin not only is the consequence of a reduced production of autoinduction compounds but also results from a defect in the proper functioning of the RlhR-C4-HSL complex. Widely distributed in the plant kingdom, flavonoids are known for their numerous and determinant roles in plant physiology, plant development and in the success of plant-rhizobia interactions, but, as shown here, some of them also have a role as inhibitors of the virulence of pathogenic bacteria by interfering with QS mechanisms.
INTRODUCTIONIn many pathogenic bacteria the production of virulence factors is triggered in a population density-dependent manner through quorum sensing (QS), a cell-to-cell communication mechanism that enables bacteria to coordinate virulence factor production by means of the synthesis, release and perception of small diffusible molecules called autoinducers (Antunes et al., 2010;Bjarnsholt et al., 2010;Case et al., 2008;Ng & Bassler, 2009). For instance, in the plant and mammal opportunistic pathogen Pseudomonas aeruginosa, two main QS systems (lasI/R and rhlI/R), responsible for the synthesis and perception of the acylhomoserine lactones (AHLs) N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), respectively , control the expression Abbreviations: AHL, acylhomoserine lactone; C4-HSL, N-butanoyl-Lhomoserine lactone; ESI-MS, electrospray ionization-MS; HHL, Nhexanoyl-L-homoserine lactone; 3-oxo-C12-HSL, N-(3-oxododecanoyl)-L-homoserine lactone; PI, propidium iodide; QS, quorum sensing.3These authors contributed equally to this work. of an arsenal of virulence factors. The transcription factors LasR and RhlR interact with and are activated by 3-oxo-C12-HSL and C4-HSL, respectively, triggering the production of biofilms, LasB elastase...