A buck-type light-emitting diode (LED) driver is proposed herein. The proposed LED driver automatically possesses current sharing and high step-down voltage gain. Without complex control, the proposed LED driver, with a single input and multiple outputs, can achieve automatic current sharing of four-channel LED strings, even under the different number of LEDs of each LED string. Furthermore, as compared with the traditional four-phase interleaved buck converter with a single input and a single output having current sharing required, the proposed circuit has the duty cycle up to 0.5, not 0.25, meaning that under the same input voltage the latter has a wider output voltage range than that of the former. Above all, if the proposed circuit with N outputs, then it still has the duty cycle up to 0.5, not one over N as shown traditionally. Moreover, as compared with the current sharing based on the differential-mode transformer, the proposed circuit has no magnetic resetting loop required. In this paper, the operating principles and design considerations of the proposed converter are discussed. Finally, the theoretical analyses and performances of the proposed LED driver are verified by simulation and experiment.