Group B streptococci (GBS) comprising three different sets of isolates (31 invasive, 36 noninvasive, and 24 colonizing isolates) were collected in Italy during the years 2002 to 2005. Clonal groups were established by pulsed-field gel electrophoresis (PFGE), and selected isolates were studied by multilocus sequence typing (MLST). GBS isolates were also characterized by classical and molecular techniques for serotyping and protein gene and antibiotic resistance profiling. Some serotypes were significantly associated with a particular isolate population: serotype Ia more frequently corresponded to invasive strains than other strains, serotype V was more frequently encountered among noninvasive strains, and nontypeable strains were more common among isolates from carriers. Four major clonal groups accounted for 52.7% of all isolates: PFGE type 1/clonal complex 1 (CC1) comprised mainly serotype V isolates carrying the alp3 gene, PFGE type 2/CC23 encompassed serotype Ia isolates with the alp1 or alpha gene, PFGE type 3/CC17 comprised serotype III isolates carrying the rib gene, and PFGE type 4/CC19 consisted mainly of serotype II isolates possessing the rib gene. The same serotypes were shared by isolates of different clonal groups, and conversely, isolates belonging to the same clonal groups were found to be of different serotypes, presumably due to capsular switching by the horizontal transfer of capsular genes. Erythromycin resistance (prevalence, 16.5%; 15 resistant isolates of 91) was restricted to strains isolated from patients with noninvasive infections and carriers, while tetracycline resistance was evenly distributed (prevalence, 68.1%; 62 resistant isolates of 91). Most erythromycin-resistant GBS strains were of serotype V, were erm(B) positive, and belonged to the PFGE type 1/CC1 group, suggesting that macrolide resistance may have arisen both by clonal dissemination and by the horizontal transfer of resistance genes.Streptococcus agalactiae (group B streptococcus [GBS]) is one of the leading causes of neonatal sepsis and meningitis (2,20,32). The colonization of the female genital tract with GBS is significantly associated with infections in neonates, and it should be carefully monitored. Moreover, GBS has also been recently recognized as an important pathogen in immunocompromised patients (12, 14, 37). The first-line agent against GBS infection is penicillin, and penicillin resistance among GBS strains has not been reported so far (5). However, for patients allergic to penicillin, macrolides (e.g., erythromycin) and lincosamides (e.g., clindamycin) are the alternative choices for the treatment of GBS infections. In the United States, the frequencies of resistance to erythromycin and clindamycin among GBS isolates have been reported to be approximately 37 and 17%, respectively (16).Two main mechanisms of erythromycin resistance in GBS isolates have been described previously (17,25). One mechanism is macrolide-specific efflux encoded by the mef(A)/mef(E) gene ( Capsular serotyping is the classic method fo...