This paper describes the main objectives, technical content, and status of the H2020 project entitled “High-performance advanced methods and experimental investigations for the safety evaluation of generic Small Modular Reactors (McSAFER)”. The main pillars of this project are the combination of safety-relevant thermal hydraulic experiments and numerical simulations of different approaches for safety evaluations of light water-cooled Small Modular Reactors (SMR). It describes the goals, the consortium, and the involved thermal hydraulic test facilities, e.g., the COSMOS-H (KIT), HWAT (KTH), and MOTEL (LUT), including the experimental programs. It also outlines the different safety assessment methodologies applied to four different SMR-designs, namely the CAREM (CNEA), SMART (KAERI), F-SMR (CEA), and NuScale. These methodologies are multiscale thermal hydraulics, conventional, low order, and high fidelity neutron physical methods used to demonstrate the inherent safety features of SMR-core designs under postulated design-basis-accident conditions. Finally, the status of the investigations is shortly discussed followed by the dissemination activities and an outlook.