In this paper, a collocation method is given to solve singularly perturbated two-point boundary value problems. By using the collocation points, matrix operations and the matrix relations of the Bessel functions of the first kind and their derivatives, the boundary value problem is converted to a system of the matrix equations. By solving this system, the approximate solution is obtained. Also, an error problem is constructed by the residual function, and it is solved by the presented method. Thus, the error function is estimated, and the approximate solutions are improved. Finally, numerical examples are given to show the applicability of the method, and also, our results are compared by existing results.