“…Despite the existence of many other approaches for time series classification [38], we use shapelets in our work, as (i) they find local and discriminative features from the data, (ii) they impose no assumptions on the nature of the data unlike autoregressive or ARIMA time series models [38,39] and they work even on non-stationary time series, (iii) they work on data instances of different lengths (unlike popular classifiers such as support vector machines, feed-forward neural networks, and random forests in their standard forms), (iv) they are easy to interpret and visualize for domain experts, and (v) they have been shown to be more accurate than other methods for some datasets [11,12,15,18,[20][21][22][23][24]27,39].…”