2018
DOI: 10.1017/s0963548318000020
|View full text |Cite
|
Sign up to set email alerts
|

A Sharp Dirac–Erdős Type Bound for Large Graphs

Abstract: Let k ⩾ 3 be an integer, hk(G) be the number of vertices of degree at least 2k in a graph G, and ℓk(G) be the number of vertices of degree at most 2k − 2 in G. Dirac and Erdős proved in 1963 that if hk(G) − ℓk(G) ⩾ k2 + 2k − 4, then G contains k vertex-disjoint cycles. For each k ⩾ 2, they also showed an infinite sequence of graphs Gk(n) with hk(Gk(n)) − ℓk(Gk(n)) = 2k − 1 such that Gk(n) does not have k disjoint cycles. Recently, the authors proved that, for k ⩾ 2, a bound of 3k is sufficient to guarantee the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
(29 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?