Abstract. We study the Maker-Breaker H-game played on the edge set of the random graph Gn,p. In this game two players, Maker and Breaker, alternately claim unclaimed edges of Gn,p, until all the edges are claimed. Maker wins if he claims all the edges of a copy of a fixed graph H; Breaker wins otherwise. In this paper we show that, with the exception of trees and triangles, the threshold for an H-game is given by the threshold of the corresponding Ramsey property of Gn,p with respect to the graph H.