To study the influence of sinter basicity on the microstructure, phase composition, and physicochemical and metallurgical properties, samples of agglomerates with different basicities were sintered and investigated. A comprehensive study of the structure, composition, chemical, and metallurgical properties of the sinter was conducted, and the optimum values for these properties were determined. The results of the mineralogical transformations that occurred during the sintering process are also presented. The magnetite contained in the concentrate partially dissolves in the silicate component and flux during agglomeration, forming a complex silicate SFCA with the general formula M14O20 (M–Ca, Si, Al, and Mg), which is the binder of the ore phases of the agglomerate. The proportion of ferrosilicates of calcium and aluminum in the sinter depends on the basicity of the sinter charge, and the morphology of the SFCA phase depends on the cooling rate of the sinter. The more CaO in the sinter charge, the more SFCA phase is formed in the sinter, and slow cooling results in the growth of large lamellar and dendritic SFCA phases.